

oWL Linux SDK
User Guide

oWL Linux SDK User Guide

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 2 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

Revision History

Revision Revision date Description

PA1 2010-05-14 First issue

PA2 2010-05-25 Updated after review

Disclaimer and copyright notice

Information in this document, including URL references, is subject to change without notice.

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. All liability, including liability for
infringement of any proprietary rights, relating to use of information in this document is disclaimed.

No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective
owners, and are hereby acknowledged.

Copyright © 2009 H&D Wireless AB. All rights reserved.

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 3 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

1 INTRODUCTION.. 4

2 DEVICE DRIVER ARCHITECTURE... 5

3 BUILD, INSTALL AND LOAD THE DRIVER ... 7

4 WIRELESS TOOLS... 8

5 WPA SUPPLICANT ..13

6 IFUP AND IFDOWN TOOLS ...16

7 PERFORMANCE EVALUATION ..17

8 REFERENCES ...20

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 4 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

1 INTRODUCTION
The Wi-Fi device based on HDG104 from HD Wireless is available on platforms ranging from small
8-bit based systems to 32-bit MCU's and ARM-based cores. The Wi-Fi device comes in different
hardware configurations to suit different kinds of applications and platforms. The device is available
with SPI, SDIO and UART interfaces. The Wi-Fi device can be used with a real time kernel, on a
free running system (no OS) or on a Linux-based system. The same Wi-Fi core software library will
be used on all configurations.

This document will briefly describe the Linux device driver for the HD Wireless Wi-Fi device.
Conceptually, this driver could be used on any host platform that supports Linux, however the
testing has been focused on the AT91SAM9M10 development kit using an ARM926 core on the
Atmel SAM9M10 application processor.

In this document, the name owl will be used when referring to the Linux driver for the HD Wireless
Wi-Fi device. Any components prefixed with owl can be considered part of the driver.

The architecture of the owl Linux device driver, information on how to build it for a particular
platform and guidelines on how to control it through common Linux tools will be outlined in the
following chapters. Finally, a short guide on how to do performance measurements will be given.

The owl device driver implements and reuses tools and interfaces that are de-facto standard in
Linux systems. Therefore, most information presented here can also be found in manual pages
and from various web resources. However, the purpose of this document is to act as a quick start
guide for evaluating the HD Wireless Wi-Fi device and to highlight any extensions or limitations
specific to the owl driver.

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 5 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

2 DEVICE DRIVER ARCHITECTURE
The following diagram shows the owl device driver architecture together with the interfaces and
tools that can be used to control a wireless connection.

Once a link is established, either by using WPA Supplicant, Wireless Tools or Wireless Extension
API directly (see figure), data can be exchanged using the BSD socket API, in the same way as a
wired interface. This enables the usage of standard applications for e.g. web servers, service
discovery and video/voice streaming.

From a user/application point of view, WPA Supplicant, Wireless Tools and Wireless Extension API
acts as different level of interfaces towards the functionality provided by the device.

The components included in the device driver architecture will be briefly described below in a
bottom-up fashion.

Wi-Fi Device

The Wi-Fi device based on HDG104 provided by HD Wireless. It fits into an SD card slot on the
platform and supports SDIO, SPI and UART interfaces. The owl firmware, included in the core
library, will execute on this device.

Host platform

The hardware that hosts the HD Wireless Wi-Fi device. The owl driver will execute on this platform.

SDIO stack

The open source SDIO stack included in Linux kernel versions starting from 2.6.23. The SDIO
stack handles host devices and card devices. The owl device driver is designed as a card device
that should fit right into this stack.

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 6 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

MCI host driver

The device driver for the SDIO/SPI host controller available on the host platform. The MCI host
driver is used by the SDIO stack as a host device to perform the low level operations. This driver is
usually provided by the host platform vendor.

oWL SDIO layer

SDIO driver for the Wi-Fi device. The SDIO driver will be used as a card device by the SDIO stack.

oWL core library

An OS-agnostic library compiled for the host platform. The library comes with a simple API that is
used to control the Wi-Fi device. The oWL core library API is used by the oWL linux adaptation
layer. The library will also manage the firmware that executes on the Wi-Fi device; the owl driver
will download the firmware to the device.

oWL Linux adaptation layer

The oWL core library is wrapped by the oWL Linux adaptation layer to fit into the Linux network
stack and Wi-Fi management interfaces. This enables the usage of common Linux tools and
utilities such as Wireless Tools and WPA Supplicant.

Wireless Extensions API

The Wireless Extension API is the de-facto standard interface for 802.11 device control in Linux.
This interface is based on ioctl system calls that offer a more fine-grained control of the device than
what is offered by the higher levels. For detailed information see [1].

Wireless Tools

The Wireless Tools provide a set of console commands that can be used from the host platform in
order to access a Wi-Fi device through the Wireless Extension API from the command line. Most of
the configuration of the wireless device can be done with the provided iwconfig and iwlist
commands. Usage of Wireless Tools will be explained in section 4.

WPA Supplicant

The WPA supplicant is an open source Linux application that is used in Wi-Fi client stations to
implement key negotiation with a WPA Authenticator, and it may control the roaming and IEEE
802.11 authentication/association of the Wi-Fi driver. Usage of WPA Supplicant will be explained in
section 5.

BSD Socket API

Standard interface to perform network communication from a user application.

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 7 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

3 BUILD, INSTALL AND LOAD THE DRIVER
Note that the oWL SDIO layer requires linux kernel version 2.6.23 or higher. If such kernel version
is not available on the host platform, the oWL SDIO layer must be modified.

Also note that the owl driver is tested on linux kernel 2.6.30, Wireless Extensions 22, and Wireless
Tools 29.

To compile the owl driver for a particular host platform, a cross compiler and the include files and

configuration for the Linux kernel must be available. Make sure to replace /path/to/kernel
with the actual path to the Linux kernel source tree used on the host platform. Also make sure to

replace /path/to/prefix with the proper cross compiler prefix, e.g. arm-linux- if the name

of the GCC binary is arm-linux-gcc. If building for a non-arm architecture, make sure to set the
ARCH parameter accordingly (however, note that the wl_api core library included in the owl driver
package is compiled for specific architecture).

$ tar xvzf owl-wifi-1.0.tar.gz

$ cd owl-wifi-1.0

$ make KERNELDIR=/path/to/kernel CROSS_COMPILE=/path/to/prefix ARCH=arm

This should produce the owl.ko binary.

Copy the owl.ko file to the host platform. The details of this step depend on the tools and

interfaces available on the host platform. In most cases, scp, can be used to transfer files over an

ssh connection.

$ scp owl.ko user@host:/path/to

Load the owl device driver, e.g. by issuing insmod owl.ko on the host platform. The owl device

driver will output net owl0: ready in the kernel log (usually /var/log/messages). The owl device

driver should now appear as interface owl0 and should be listed by ifconfig owl0.

$ insmod owl.ko

$ ifconfig owl0

owl0 Link encap:Ethernet HWaddr 00:00:00:00:00:00

 BROADCAST MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Note that the device is not usable and will not have a valid MAC address unless it is brought up.
See section 4 for more information.

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 8 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

4 WIRELESS TOOLS
Wireless Tools can be used for basic interactive Wi-Fi management, directly from the command
line. This section will show examples of how to perform the following operations using Wireless
Tools.

 Enable the owl network interface

 Connect to an unprotected network

 Assign an IP address using static configuration or DHCP.

 Verify the connection status with the ping command.
 Disconnect from the network.

 Configure the owl device to use WEP encryption.

 Connect to a WEP encrypted network.

 Disable WEP encryption and delete any configured keys

 Enable device power save mode.

All the steps and expected output is provided in detail below. See the end of this section for a
complete list of supported commands. For complete documentation on Wireless Tools, see the
Wireless Tools documentation [3].

Enable the owl network interface

This will enable the owl device and firmware will be downloaded.
$ ifconfig owl0 up

Use ifconfig to see the interface information.

$ ifconfig owl0

owl0 Link encap:Ethernet HWaddr 7A:C4:0E:A1:DD:9C

 UP BROADCAST MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Scan for networks

Scan for neighbouring networks. A list of networks with information on e.g. ssid, encryption mode
and signal levels will be shown when the scan is completed.

$ iwlist owl0 scan

owl0 Scan completed :

Cell 01 - Address: 68:7F:74:10:5B:4C

 ESSID:"hdwireless"

 Mode:Managed

 Encryption key:off

 Frequency:2.422 GHz (Channel 3)

 Quality:21/30 Signal level:-29 dBm Noise level:-50 dBm

 Extra:Beacon period: 100 Kusec

 Extra:DTIM period: 1

Cell 02 - Address: 00:23:69:B5:BE:48

 ESSID:"angr2"

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 9 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

 Mode:Managed

 Encryption key:off

 Frequency:2.412 GHz (Channel 1)

 Quality:20/30 Signal level:-30 dBm Noise level:-50 dBm

 Extra:Beacon period: 100 Kusec

 Extra:DTIM period: 2

Cell 03 - Address: 00:25:9C:6F:58:B0

 ESSID:"TeliaADSL"

 Mode:Managed

 Encryption key:on

 Frequency:2.437 GHz (Channel 6)

 Quality:22/30 Signal level:-45 dBm Noise level:-67 dBm

 IE: IEEE 802.11i/WPA2 Version 1

 Group Cipher : CCMP

 Pairwise Ciphers (1) : CCMP

 Authentication Suites (1) : PSK

 Extra:Beacon period: 100 Kusec

 Extra:DTIM period: 1

...

Connect to an unprotected network

Connect to an unprotected network that was found during the scan. In this case we will choose the
ssid hdwireless.

$ iwconfig owl0 essid hdwireless

This will initiate a connect, use the iwconfig command again to "poll" the connection status. The

iwconfig output will look similar to below when not yet connected:

$ iwconfig owl0

owl0 IEEE 802.11bg ESSID:"hdwireless"

 Mode:Managed Access Point: Not-Associated

 Encryption key:off

 Power Management:off

Once the connetion is established, the MAC address of the access point should be displayed in the
output:

$ iwconfig owl0

owl0 IEEE 802.11bg ESSID:"hdwireless"

 Mode:Managed Frequency:2.422 GHz Access Point:68:7F:74:10:5B:4C

 Encryption key:off

 Power Management:off

 Link Quality=19/30 Signal level=-27 dBm Noise level=-46 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 10 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

Note again that the iwconfig command will only initiate a connection. Another connection
request cannot be issued until the previous connection has been successfully established or
considered failed. Therefore, if the owl driver receives two connection requests very quickly, the
last one will be discarded:

$ iwconfig owl0 essid hdwireless; iwconfig owl0 essid foo

Error for wireless request "Set ESSID" (8B1A) :

 SET failed on device owl0 ; Device or resource busy.

A wireless event that indicates connected or disconnected status will be generated when a
connection attempt is completed. However, the details about wireless events are out of the scope
for this document. See the Linux kernel header file and related files [1] for more information.

Assign an IP address

If a static IP address is used, set it using ifconfig:

$ ifconfig owl0 192.168.2.50

If DHCP is used, invoke the DHCP client available on the platform:

$ udhcpc -i owl0

udhcpc (v1.13.2) started

Sending discover...

Sending select for 192.168.2.102...

Lease of 192.168.2.102 obtained, lease time 172800

adding dns 192.168.2.1

The current IP address can now be displayed using ifconfig:

$ ifconfig eth0

eth0 Link encap:Ethernet HWaddr 3E:36:65:BA:6F:BE

inet addr:192.168.2.102 Bcast:192.168.2.255

Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:6601 errors:173 dropped:0 overruns:0 frame:0

 TX packets:173 errors:0 dropped:0 overruns:0 carrier:0

 collisions:49 txqueuelen:1000

 RX bytes:938610 (916.6 KiB) TX bytes:19540 (19.0 KiB)

 Interrupt:25 Base address:0xc000

Verify the connection

Ping the access point to verify the connection:

$ ping -c 3 192.168.2.1

PING 192.168.2.1 (192.168.2.1): 56 data bytes

64 bytes from 192.168.2.1: seq=0 ttl=64 time=1.672 ms

64 bytes from 192.168.2.1: seq=1 ttl=64 time=1.333 ms

64 bytes from 192.168.2.1: seq=2 ttl=64 time=1.342 ms

--- 192.168.2.1 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 1.333/1.449/1.672 ms

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 11 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

Disconnect from the network

Disconnect from the network by setting the ssid to off:

$ iwconfig owl0 essid off

$ iwconfig owl0

owl0 IEEE 802.11bg ESSID:""

 Mode:Managed Access Point: Not-Associated

 Encryption key:off

 Power Management:off

Configure the device to use WEP encryption

Now, we will connect to an access point that uses WEP 64-bit encryption, shared key
authentication and with key index 1 set to 0102030405. Key index 1 should be the default transmit
key and no other keys should be configured on the access point.

First, the key must be configured into the owl device:

$ iwconfig owl0 key 0102030405 [1] restricted

The [1] specifies that we are setting key index 1 (as was configured in the access point), restricted

means that shared key authentication will be used. To list the current key configuration, iwlist
can be used:

$ iwlist owl0 keys

owl0 4 keys available :

 [1]: 0102-0304-05 (40 bits)

 [2]: off

 [3]: off

 [4]: off

 Current Transmit Key: [1]

 Security mode:restricted

Connect to an WEP encrypted network

Now it should be possible to connect to the network, set an ip address and verify the connection
with ping:

$ iwconfig owl0 essid hdwireless

$ iwconfig

owl0 IEEE 802.11bg ESSID:"hdwireless"

 Mode:Managed Frequency:2.422 GHz Access Point:68:7F:74:10:5B:4C

 Encryption key:0102-0304-05 Security mode:restricted

 Power Management:off

 Link Quality=23/30 Signal level=-20 dBm Noise level=-43 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

$ ifconfig owl0 192.168.2.50

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 12 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

$ ping -c 3 192.168.2.1

PING 192.168.2.1 (192.168.2.1): 56 data bytes

64 bytes from 192.168.2.1: seq=0 ttl=64 time=1.803 ms

64 bytes from 192.168.2.1: seq=1 ttl=64 time=1.707 ms

64 bytes from 192.168.2.1: seq=2 ttl=64 time=1.503 ms

--- 192.168.2.1 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 1.503/1.671/1.803 ms

Disable WEP encryption and delete keys

To disable WEP encryption and delete all the configured keys, the iwconfig command can be
used:

$ iwconfig owl0 key off

Enable device power save mode

In power save mode, the device will sleep until either the host request to transmit data or until there
is buffered incoming data to fetch from the access point. In power save mode, the throughput
performance will be slightly degraded and the response latency will depend on the access point
beacon interval and DTIM parameters. In most cases the access point is configured with 100 ms
beacon interval and a DTIM interval of 1; this results in responses time around 100 ms. Depending
on the application, the power consumption of the owl device can be heavily reduced.

Device power save mode can be enabled with the iwconfig command:

$ iwconfig owl0 power on

The current power management configuration can be shown by issuing iwconfig again:

$ iwconfig owl0

owl0 IEEE 802.11bg ESSID:"angr"

 Mode:Managed Frequency:2.422 GHz Access Point:68:7F:74:10:5B:4C

 Bit Rate=54 Mb/s

 Encryption key:0102-0304-05 Security mode:restricted

 Power Management timeout:10

 Link Quality=23/30 Signal level=-20 dBm Noise level=-43 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

Power Management timeout:10 indicates that the device is in power save mode with a timeout
setting of 10 [ms]. After waking up, the device will wait for timeout [ms] before going back to sleep.

List of supported Wireless Tools commands and options

iwconfig owl0 key <key 5 or 13 hex digits> [idx] [authmode] [off]

iwconfig owl0 essid <ssid|off>

iwconfig owl0 ap <mac>

iwconfig owl0 power on|off

iwlist owl0 keys

iwlist owl0 scan

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 13 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

5 WPA SUPPLICANT
The WPA supplicant can be configured to control the roaming and IEEE 802.11
authentication/association of the owl device. The configuration is usually performed in a

configuration file, e.g. /etc/wpa_supplicant.conf.

It is also possible to directly issue commands to the WPA Supplicant, using a dedicated shell

command, wpa_cli. The usage of wpa_cli is out of the scope of this document, but is described
in detail in the WPA supplicant documentation [4].

This section will show examples of how to perform the following operations using WPA Supplicant.

 Connect to an unprotected network

 Connect to a WPA protected network that uses TKIP encryption
 Connect to a WPA2 protected network that uses CCMP encryption

 Connect to a network that uses any WPA/WPA2 protocol and TKIP/CCMP encryption.

All the steps and expected output is provided in detail below. See the end of this section for a
complete list of supported configurations. For complete documentation on WPA Supplicant, see
the WPA Supplicant documentation [4].

Connect to an unencrypted network

To simply instruct the WPA Supplicant to connect to any unencrypted network with ssid hdwireless,
the following configuration file should be enough:

ctrl_interface=/var/run/wpa_supplicant

network={

 ssid="hdwireless"

 key_mgmt=NONE

}

The path to the configuration file and the interface name (owl0) should then be passed as
parameters when starting the WPA Supplicant:

$ wpa_supplicant -Dwext -iowl0 -c /etc/wpa_supplicant.conf -B

The paramater -Dwext informs the WPA Supplicant that the standard Wireless Extensions

interface should be used to control the network interface. For detailed information on how to
configure and run the WPA supplicant, see the WPA supplicant documentation [4].

The WPA Supplicant will now periodically scan for networks until one that matches the
configuration is found. Once found, a connection will be established. The WPA Supplicant will also
handle reconnect if the connection is lost. Therefore, opposed to Wirieless Tools, when using the
WPA Supplicant, it is not necessary to perform manual scanning and network selection.

Note that the WPA Supplicant configuration can hold several networks and the WPA Supplicant
will choose and roam amongst them. However, most importantly, the WPA supplicant implements
the key negotiation with a WPA Authenticators.

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 14 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

Connect to a WPA protected network that uses TKIP encryption

To connect to a network using WPA key management and TKIP encryption, the following network
configuration can be specified in the configuration file:

network={

 ssid="hdwireless"

 key_mgmt=WPA-PSK

 group=TKIP

 pairwise=TKIP

 proto=WPA

 psk="hdwirelesskey"

}

The key configured on the access point should be hdwirelesskey

To force the WPA Supplicant to re-read its configuration file wpa_cli can be used

$ wpa_cli reconfigure

One should remember that all wireless operations performed by both the WPA supplicant and
Wireless Tools are done through the same Wireless Extensions API. This means that it will still be

possible to e.g. check the connection status with iwconfig:

$ iwconfig

owl0 IEEE 802.11bg ESSID:"angr"

 Mode:Managed Frequency:2.422 GHz Access Point:68:7F:74:10:5B:4C

 Bit Rate=54 Mb/s

 Encryption key:472A-7E38-C465-D4EB-6DA7-BAE6-4700-0960-EDB1-

 40DE-18CC-5A02-4AE1-EA96-F3EE-142A Security mode:open

 Power Management timeout:10

 Link Quality=24/30 Signal level=-20 dBm Noise level=-44 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

Once connected, it is possible to obtain an ip address and perform the ping test:

$ udhcpc -i owl0

Sending discover...

Sending select for 192.168.2.102...

Lease of 192.168.2.102 obtained, lease time 172800

adding dns 192.168.2.1

$ ping -c 3 192.168.2.1

...

Connect to a WPA2 enabled network that uses CCMP encryption

To connect to a network using the WPA2 protocol and CCMP encryption, the following network
configuration can be specified in the configuration file:

network={

 ssid="hdwireless"

 key_mgmt=WPA-PSK

 group=CCMP

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 15 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

 pairwise=CCMP

 proto=WPA2

 psk="hdwirelesskey"

}

Connect to a network that uses any WPA/WPA2 protocol and TKIP/CCMP encryption

Note that several encryption parameters can be specified on a single line, allowing connections to
a specific ssid using a range of encryption methods. The configuration file below should allow
connections to the hdwireless access point regardless of whether the WPA or WPA2 protocol is
used or whether CCMP or TKIP is used for pairwise and group key encryption. The actual
encryption method used will be the most secure one that is supported by the access point.

network={

 ssid="hdwireless"

 key_mgmt=WPA-PSK

 group=TKIP CCMP

 pairwise=TKIP CCMP

 proto=WPA WPA2

 psk="hdwirelesskey"

}

List of supported WPA Supplicant network options

Key management (key_mgmt): WPA-PSK, NONE

Group key encryption (group): CCMP, TKIP

Pairwise key encryption (pairwise): CCMP, TKIP

Protocol (proto): WPA, WPA2

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 16 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

6 IFUP AND IFDOWN TOOLS
In Linux, network device configuration is usually specified in /etc/network/interfaces. This

allows the usage of the tools ifup and ifdown. Wired as well as wireless interfaces can be
configured in the same file.

To configure the owl0 interface to use the WPA Supplicant, a particular wpa_supplicant.conf

file and specific IP settings the following entry can be added to /etc/network/interfaces:

iface owl0 inet dhcp

 wpa-driver wext

 wpa-conf /etc/wpa_supplicant.conf

Now, when the owl0 interface is brought up using ifup owl0, the WPA Supplicant will be started

with the specified configuration file and as soon as a connection is established, an IP address will
be assigned using DHCP.

Note that Wireless Tools can also be invoked through ifup and ifdown, if declared in

/etc/network/interfaces. See the manual pages for ifup, ifdown and interfaces for

more information.

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 17 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

7 PERFORMANCE EVALUATION
This section will briefly describe how to evaluate the throughput performance of the owl device
driver and the HD Wireless Wi-Fi device.

The throughput performance evaluation is performed by sending TCP data between the Wi-Fi
device (DUT) and a PC. The DUT and PC should be connected to the same access point. To avoid
any limitations introduced by the access point and the PC, the PC should have a wired connection
to the access point. For maximum performance, make sure that the selected channel is not used
by any other equipment and that no other client is connected to the AP.

Using the TCP protocol to test throughput performance certainly introduces quite some protocol
related overhead such as extra headers, retransmissions and acknowledgements. Therefore the
actual throughput results will be highly dependent on the platform dynamic responsiveness (e.g. to
handle incoming TCP acknowledgements) since TCP packets will be sent in both directions to
successfully complete a single direction data transfer. The actual raw data throughput can be
considered significantly better; e.g. using the UDP protocol would give a higher throughput of
actual payload data.

The throughput measurement setup and execution will be performed in the following steps:

 Obtain and configure the software tools

 Establish a link between the DUT and the PC

 Test TX throughput

 Test RX throughput

All the steps and expected output is provided in detail below.

Obtain and configure the software tools

In this case, to transmit and receive TCP data, the standard tool TTCP [5] has been chosen. It can
be obtained from e.g. http://www.netcore.fi/pekkas/linux/ipv6/ttcp.c.

To compile ttcp for the host platform to which the Wi-Fi device is connected (DUT), use the cross
compiler for the platform. The cross compiler used here is the same as the one used to compile the

owl device driver. Make sure to replace /path/to/gcc with the proper cross compiler, e.g. arm-

linux-gcc if that is the name of the GCC binary.

$ /path/to/gcc ttcp.c –o ttcp

Make sure to copy the ttcp binary to the host platform. ttcp is also needed on the PC. On a
Linux PC, the same TTCP source code can used:

$ gcc ttcp.c –o ttcp

If a windows PC is used, pcattcp should be used and can be downloaded from
http://www.pcausa.com/Utilities/pcattcp.htm.

During test execution, the TTCP tool will be invoked on both the DUT and PC, one acting as the
transmitter and the other one as the receiver. The transmitter will send a fixed (but configurable)
amount of data to the receiver using the TCP protocol. The throughput will then be calculated
based on the amount of payload data transferred in during the elapsed time.

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 18 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

Establish a link between the DUT and the PC

Make sure that the PC gets an IP address from the access point (or use a static IP) when the
network cable is connected. In Windows, this should happen automatically as long as DHCP is
enabled in the network configuration for the ethernet port. In Linux the DHCP client might have to
be started manually, depending on the distribution and configuration. Now connect the DUT to the
same access point, as explained in section 4 and 5.

It should now be possible to ping the PC from the DUT through the access point by using the ping
command in the DUT console (make sure that the actual IP address of the PC is replaced in the
example below)

$ ping <ip>

...

Test TX throughput

First start ttcp on the PC in receive mode. In windows use the pcattcp tool:

PC> pcattcp -r -s

In Linux, use the ttcp tool:

PC> ttcp -r -s

Then the transmitter should be started on the DUT by using the ttcp command on the DUT:

$ ttcp -t –s –n128000 <ip address of PC>

This will start the transfer of 128 Mb payload data. When the transfer is completed, throughput
information will be printed on both the DUT console and the PC console. Se below for example
output shown on DUT followed by output on PC.

$ ttcp -t –s –n128000 <ip address of PC>

ttcp-t: nbuf=128000, buflen=1024, port=2000

ttcp-t: socket

ttcp-t: connect

ttcp-t: 0.1user 3.8sys 0:52real 7% 0i+0d 0maxrss 0+2pf 6185+37534csw

ttcp-t: 131072000 bytes processed

ttcp-t: 3.94 CPU sec = 32487.3 KB/cpu sec, 259898 Kbits/cpu sec

ttcp-t: 52.0811 real sec = 2457.71 KB/real sec, 19661.6Kbits/sec

PC> ttcp -r -s

ttcp-r: nbuf=1024, buflen=1024, port=2000

ttcp-r: socket

ttcp-r: accept

ttcp-r: 0.0user 0.5sys 0:52real 1% 0i+0d 392maxrss 0+0pf 91562+27csw

ttcp-r: 131072000 bytes processed

ttcp-r: 0.564035 CPU sec = 226936 KB/cpu sec, 1.81549e+06 Kbits/cpu sec

ttcp-r: 52.0956 real sec = 2457.02 KB/real sec, 19656.2 Kbits/sec

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 19 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

Test RX throughput

First start ttcp on the DUT in receive:

$ ttcp –r -s

Then the transmitter should be started on the PC. In windows, use the pcattcp tool:

PC> pcattcp -t -s –n128000 <ip address of DUT>

In linux, use the ttcp tool:

PC> ttcp -t -s –n128000 <ip address of DUT>

This will start the transfer of 128 Mb payload data. When the transfer is completed, throughput
information will be printed on both the DUT console and the PC console. . Se below for example
output shown on DUT followed by output on PC.

$ ttcp –r –s

ttcp-r: nbuf=1024, buflen=1024, port=2000

ttcp-r: socket

ttcp-r: accept

ttcp-r: 0.4user 13.1sys 0:58real 23% 0i+0d 0maxrss 0+1pf 85295+399984csw

ttcp-r: 131072000 bytes processed

ttcp-r: 13.6 CPU sec = 9411.76 KB/cpu sec, 75294.1 Kbits/cpu sec

ttcp-r: 58.4456 real sec = 2190.07 KB/real sec, 17520.6 Kbits/sec

PC> ttcp -t -s –n128000 <ip address of DUT>

ttcp-t: nbuf=128000, buflen=1024, port=2000

ttcp-t: socket

ttcp-t: connect

ttcp-t: 0.0user 0.1sys 0:58real 0% 0i+0d 392maxrss 0+1pf 7118+26csw

ttcp-t: 131072000 bytes processed

ttcp-t: 0.156009 CPU sec = 820465 KB/cpu sec, 6.56372e+06 Kbits/cpu sec

ttcp-t: 58.4284 real sec = 2190.71 KB/real sec, 17525.7 Kbits/sec

oWL Linux SDK User Guide 10262-DRF100

 10xxx-DRFxxx oWL Linux SDK User Guide page 20 (20)

 Copyright © 2010 H&D Wireless AB, Sweden, all rights reserved.

8 REFERENCES
[1] Linux kernel include-file: include/linux/wireless.h
[2] wl_api reference documentation
[3] http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
[4] http://hostap.epitest.fi/wpa_supplicant/

